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Abstract

In this paper, we introduce a class of lightlike submanifolds of Kaehler manifold.
We show that the induced connection is metric. We also endow theirs with
symplectic form. Finally, we obtain a class of lightlike symplectic submanifolds.
Hamiltonian formulation and symplectic reduction machinery in lightlike are

presented.

1. Introduction

The growing importance of lightlike submanifolds in global Lorentzian
geometry and their application in general relativity motivated the study
of degenerate manifolds. Recently, that is during two to three last
decades, the use of general null geometry theory as a mathematical
foundation in the study of massless objects in physics has become very
important [11, 12]. This study is becoming one of interesting topics in

differential geometry of submanifolds of semi-Riemannian manifolds.

It is also known that classical mechanics, in its Hamiltonian
formulation on the motion space, has for framework a symplectic

manifold. Smooth functions on that manifold are observable and the
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dynamics is defined in terms of Hamiltonian H and time evolution of an
observable f; is governed by the equation

%ft = _{H’ ft}

For this paper, we want to make link between the lightlike geometry
and classical mechanics in its Hamiltonian formulation. It is possible to
have, in this direction, the results who can explain or develop more one of

these two theory.

Our aim in this paper is to give a class of Kaehler lightlike
submanifolds of an indefinite Kaehler manifold, which is invariant under
the complex structure. There exist many works on CR-lightlike manifolds.
But, in this work, the radical distribution is invariant under a complex
structure. In [7], we introduced a volume element of lightlike
hypersurface. We give a generalisation of this volume element on a
lightlike submanifold. In Riemannian manifolds, it is known that the
Kaehler form is a symplectic, even if Thurston [13] showed that the
converse is not true and give some examples. But, it is come evident that
in the complex lightlike submanifold of an indefinite Kaehler manifold,
the Kaehler form is not symplectic contrary to pseudo-Riemannian

manifold case.

Moreover, if f:M — (M, g, J,w) is holomorphic isometric
immersion of complex submanifold M into pseudo symplectic manifold
(M, g, J, w), then f*w is symplectic form on M [4, pg.76]. This result is
not true in the lightlike one. We show that induced connection on M is
metric.

Theorem 1.1. Let f:(M?" g, S(IM),S(TM*))—> (M?*™,3,J,w)
be a holomorphic isometric immersion of lightlike Kaehler submanifold

M?" into an indefinite Kaehler manifolds M>™. Then an induced

connection on M is metric. Moreover, f*w is no symplectic.
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Corollary 1.1. Let f:(M?", g, S(TM)) —» (M?™, g, J, w) be a
holomorphic isometric immersion of a lightlike coisotrope almost complex
submanifold into an indefinite Kaehler manifolds. Then (M?", g) is

totally geodesic.

This corollary generalize the result obtained by Fazilet in
[8, Proposition 7.3]. This paper is only which talk about this subject, but

in small section without geometry details but in Kupeli approach [10].

As another consequence, a lightlike almost complex submanifold M is

totally geodesic or minimal.
Corollary 1.2. Let f:(M?", g, S(TM), S(TM*))—> (M?*™,g,J,w)

be a holomorphic isometric immersion of a lightlike complex submanifold

M?" into an indefinite Kaehler manifolds M>™. Then M?" is minimal

or totally geodesic.

We use the lightlike metric to endow this class of submanifolds with
symplectic form. Thus, for this normalization, we obtain necessary
condition for lightlike vector fields to be Hamiltonian. The symplectic
reduction machinery is also used.

Theorem 1.2. Let (M?", S(TM), S(TM*), g, J) be an invariant
holomorphic 2-lightlike almost complex submanifolds of an indefinite
symplectic manifolds (M>™, g, J, w) and normalizing null vectors given
in Lemma 4.1. Then an associate 2-form n = f*w + 0 A JO is a symplectic

form on M.

Theorem 1.3. Let (M, g, S(TM), S(TM*),n) be a 2-lightlike
invariant submanifold endowed with associate symplectic form m. Then
Rad(TM) c £(M, n).

Theorem 1.4. If the screen leaf space M /T =P is a smooth

manifold, then (P, (f*w)\ p) is Kaehler (symplectic manifold).
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The paper is organized as follows: In Section 2, we give preliminaries
which come essentially to Duggal and Bejancu [5] for lightlike
submanifolds and to Cannas [4] for Kaehler manifolds. We also give, in

this section, a generalization of lightlike submanifolds metric volume.

In Section 3, we present an invariant lightlike Kaehler submanifold.
We prove the Theorem 1.1 and Corollaries 1.1, 1.2. We end this section by
examples. In Section 4, we use then another normalization to associate
the symplectic form to lightlike Kaehler submanifolds. We prove Theorem
1.2. In Subsection 4.3, the proof of Theorem 1.3 and lightlike Hamiltonian
vector fields are presented. The last Section 5, in which the proof of
Theorem 1.4 deals with symplectic reduction machinery in lightlike

Kaehler submanifolds.
2. Preliminaries

2.1. Basics on lightlike submanifolds
Let (M 2", g) be an r-lightlike submanifolds of pseudo-Riemannian
manifold (]\_/[ Zm, g). Then one has (2p)-dimensional vector space
(p =m—n).
T.M* = (v, e T, M, g(vy, uy) =0, Vu, € T,M},
and
RadTM = TM N TM* = {0}

is r-dimensional subspace. There exists four kinds of lightlike

submanifolds:
e The proper r-lightlike submanifolds, where 0 < r < min(2n, 2p). In
this case, Rad(TM)<TM and Rad(TM)<TM™ .

e The coisotropic submanifolds, when 1< r =2p < 2n. Then,

Rad(TM) = TM* < TM.
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e The isotropic submanifolds case, when 1 <r = 2n < 2p. Then,

Rad(TM) = TM < TM*.

e The totally lightlike submanifolds, when 1 < r = 2p = 2n. Then,
Rad(TM) = TM = TM*.

In the first case, TM has a follow decomposition:

TM\y = TM ® tr(TM)

= (TM @ Ur(TM)) L S(TM™1), (1)

and
TM = Rad(TM) L S(TM), @)
TM* = Rad(TM) L S(TM*"), (3)

where S(TM), S(TM*) are screen distribution, screen transversal vector

bundle, which is a complementary vector bundle of Rad(TM) in TM*
and [tr(TM) is a lightlike transversal vector bundle. For any local basis
{¢&;} of Rad(TM), there exists a local frame {N;} of ltr(TM) such that
8(&i, N;) =38;, 8(N;j, N;) =0, and g(W;, N;) =0 for any local frame

W: 1 of S(TM). In the coisotrope case, S(TM 1) = {0}. Then the relation
1

(1) becomes
TMy = TM ® ltr(TM). (4)
In the third case, the isotropic submanifold gives S(TM) = {0} and
TM|y = (Rad(TM)® ltr(TM)) L S(TM™*). (5)
In the last case, S(TM) = S(TM*) = {0}.

Let V be the Levi-Civita connection on M and V be induced Levi-

Civita connection on M. Then according to relations (1) and (4);
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VxY =VxY +h(X,Y), VX,YeI(TM), (6)
and

VxV = -AyX + V5V, VX e I(TM), V e I(tr(TM)), (7

where {VyY, AyX}! and {i(X,Y), VikV! belong to I'(TM) and
[(¢tr(TM)), respectively.

Suppose that S(TM*) = {0} and consider the projection morphisms

Land S of tr(TM) on Iitr(TM) and S(TM™'), respectively.
L:tr(TM) — itr(TM),
S :tr(TM) — S(TM™).
Then, the relations (6) and (7) become
VY =VyY + (X, Y)+h%(X,Y), V X,Y e(TM), )
where h'(X,Y) = L(W(X, Y)) and A*(X, Y) = S(h(X, Y)).
VxV =-AyX + DYV + D%V, V X eT(TM), V eT(r(TM)), (9)
where DV = L(VV) and DV = S(VkV).
For any X e I'(TM),
Vi T(Ur(TM)) > T(Utr(TM)), V5 (LV) = D%(LV), (10)
and
V& : T(S(TM*1)) > I(S(TM™1)), V%(SV) = D%(SV), (11)
for any V e I['(¢r(TM)). Then, we define

D' i T(TM) x T(S(TM ™)) - T(itr(TM)), D' (X, SV) = D& (SV), (12)
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D¥ : T(TM) x T(Itr(TM)) — T(S(TM*)), D¥(X, LV) = D§(LV), (13)
forany X e I(TM) and V e I'(¢tr(TM)).
Thus, the relation (9) becomes
VxV = -AyX + DY(X, SV)+ D*(X, LV) + V5 (LV) + V% (SV). (14)

The above different geometry objects verify the following relations:

g(h*(X,Y), W)+2(Y, D'(X, W)) = 2(AyX, Y), (15)
g(r(X,Y), 8)+ 8(Y, h'(X, &) + B(Y, V&) = 0, (16)
g(W, D*(X, N)) = g(AwX, N), Sk
g(ANX, N') = g(Ay X, Y), (18)
g(ANX, PY) = g(N, VxPY), (19)
(X, €;) = hi(X, &), (20)

where X,Y e [(TM), N e I'(Itr(TM)), &; € T(Rad (TM)), W e T(S(TM1)),
and h; are such that

h(X,Y)=g(VxY, &), VX,Y e (TM). (21)

In general, the induced connection V on M and transversal

connection V! on tr(TM) are not metric. Thus,
(Vxg)(¥, Z) = g(h' (X, Y), Z)+ B (X, Z), ), 22)
and
V(@) (V, V') = - (8(AvX, V') + (A X, V)). (23)
2.2. Basics on Kaehler manifolds

Let (M?™, g) be a pseudo-Riemannian manifold and suppose there

exists an automorphism o on TM such that J 2 2 -1, where I 1is the

identity on TM and
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g(J.X,J.Y)=g(X,Y); VX,Y eT/M.

Recall that the index of such metric is even. Then (M, g, ) is called

an indefinite Hermitian manifold, if the Nijenhuis tensor fields of o

vanished (N3 = 0), where
N7 (X,Y) =[JX, JY]-[X, Y] - J([X, JY]+[JX, Y)). (24)

Moreover, according to Barros and Romero [3], M is called an

indefinite Kaehler manifolds, if J is parallel with respect to V, the Levi-

Civita connection of (M, g). That is,
Vd = 0. (25)

The existence of complex structure J is not always guaranteed. As the

6-dimensional sphere S% has no complex structure. However, S8 carries

an almost complex structure [9].
Let w be a 2-form on M define as follows:
wX,Y)=3(X,JY), VX,Y eD(TM). (26)
Then w is called Kaehler form and define a symplectic form on M.

Moreover, (M , g, J, w) is an indefinite symplectic manifolds. But, it is

shown by Thurston [13] that a symplectic manifold not always Kaehler. It

is also comment by Banyaga [2].
Let M be a submanifold of a symplectic manifold (M, w). We note
T M ={v, e T.M, w,(vy, u,)=0, Vu, € T,M},
and

Rad®(TM) = TM N TM*v.
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2.3. Metric volume element on lightlike submanifolds

Let (M, g, S(TM), S(TM')) be an m-dimensional lightlike

submanifolds of an oriented (m + p)-dimensional semi-Riemannian

(M, g)and i : M — M be an isometric immersion.

Suppose s : M — RP is a submersion such that there exists a € R?,
which gives s !(a) = M.

Proposition 2.1. The p-form w = ds; Adsy ANdsg A...Ads), is nonull

everywhere, where s = (s, ..., sp). Moreover, there exists on M the

m-form m such that

(wAn)(x) = vz(x), xe M, 27

where vy; is an element of volume on M.

Then, the volume form vy, on M is characterized by

v (x) = i*(n) (x).

Proof 2.1. w is everywhere nonull. Indeed, s is a submersion and the

rank of the Jacobian of s is constant and equal to p on M.

(1) Existence of n :

We can take 1 as

n= U]W((dsl )#7 R (dsp )#)a

where (ds; }* is a vector field such that ds;((ds j ¥ = 8

This vector field (ds; )* is easily obtained because of nodegenerate of
the metric g.
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(2) Uniqueness of vy :
Suppose there exists n and n' such that
wAnN =wAnN = vy,
then
wAn-1n)=0, n-n"=WAy,
where y isa (m — p)-form on M.

Let X be the vector field on M, then w(X) = 0. Thus,

e N
im=1n =vy.

Remark 2.1. This volume element is independent to the choice of

screen distribution. The orientation of lightlike submanifolds comes the

orientation of M as follows. Let w = ds; Adsy Adss A...Ads,, we say

p’
that M has direct orientation, if det(w Amn) > 0. The indirect is given by
det(w Am) < 0. In another way, let f: MP — M"™ be an isometric
immersion defined as

(%1, s xp) > (A1, s Xp)s ey fr(g, oy 2p).

Then n = [Min(J(f), )|dx; A...Adx, is a nonull p-form on M, Vx e M;
where J(f), is a Jacobian of fin x, Min(J(f), ) is the p-matrix (minor)
obtained to Jacobian with nonull determinant, and |Min(J(f), )| is its

determinant.

3. Invariant Lightlike Kaehler

Submanifolds

Let (M?", g, S(TM), S(TM*)) be a lightlike submanifolds of an
indefinite Kaehler manifolds (M, g, J). Then M?2" is said to be an

invariant lightlike almost complex submanifolds, if

J (T M)=T.M, ¥YxeM. (28)
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If we denote of the restriction of J on TM, then we have
g(JX, JY) = g(X, Y). (29)
Proposition 3.1. (1) Rad(TM) and S(TM) are invariant by .
(2) Vx € M, subspaces Rad(T,M),S(T, M), S(T,M*), and Itr(T, M)
are even dimensions.
Proof 3.1. (1) Let & € Rad(TM), we have VX € TM g(J¢, X) =
g(&, JX) =0, then J¢ e Rad(TM). Since J2 = -1, then JRad(TM) =

Rad(TM). 1t is the same for S(TM).

2) Let W e S(TM), we have g(JW, W)=—g(W, JW)=g(W, JW)=0,
then JW is orthogonal to W. As S(TM) is invariant, then the dimension

of vector space S(T,, M), Vx € M is even.

Then, we deduce dimensions of subspaces Rad(T, M), S(T,M"),
and ltr(T M), Vx € M.
Theorem 3.1. Let (M?", g, J) be an invariant lightlike almost

complex submanifolds of an indefinite Kaehler manifolds. Then M>" is a

lightlike Kaehler manifolds. This means
VJ =0 and Ny =0,
where V is the induced connection on M.
Proof 3.2.
e According to the relation (1), the Gauss formula is given by

VxY =VxY +h(X,Y), VX,YeTM, (30)
where VyY € TM and A(X,Y) e tr(TM). Using the equation VJ = 0,
we obtain

Vx(JY)-J(VxY)+ X, JY)-J(WX,Y)) = 0.
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Then,
WX, JY)-J(h(X,Y)) = 0, (31)
and
Vx(JY)-J(VxY)=0. (32)
Thus VJ = 0.

e With a straightforward computation and using relations (24), (31),
and (32), we have N = 0.

These results are independent to the choice of screen distribution.

Definition 3.1. Let f : M — (M, J ) be an isometric immersion of a

lightlike almost complex submanifold into an indefinite Kaehler

manifolds. Then f is a holomorphic isometric immersion, if f,J = Jf,

on M, where J\ 3y = oJ.

Proposition 3.2. If f is a holomorphic isometric immersion, then

TM*w = TM™¢ and Rad®(TM) = Rad®(TM).
Proof 3.3 (Proof of Theorem 1.1). f is holomorphic, i.e., f,J = Jf, on
M. Recall f*g = g and VX, Y € TM, g(X, JY) = w(X, Y).
fre(X, JY) = g(£.X, f,JY)

= g(£.X, JI.Y)

= ffw(X,Y)

= g(X, JY).
Since g is degenerated.

Moreover, we show that f*w(X, Y) = g(X, JY) is a Kaehler form on

M and we have df*w = f*dw = 0. Thus df 'w(X, Y, Z) = (Vxg)(Y, JZ)
-(Vyg)(X, JZ)+ (Vzg)(X, JY) = 0. Then, we deduce the result.
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Proof 3.4 (Proof of Corollary 1.2). Let {&;,..., &g, JEq, ..., JER, Xpiq,
oy Xy JXpiq, ..., JX, } be a local system coordinate of T, M, Vx e M.
Recall

VY =VyY +hU(X, Y)+h%(X,Y), V X,Y e (TM), (33)
where hl(X, Y)=L(h(X,Y)) and A°(X, Y) = S(h(X, Y)).
According to Theorem 1.1 and relation (22), Rt =o. Moreover,

h(%i,ai)-i-h(J&i,Jii):O, Vle{l,,k} and h(Xi,Xi)+h(JXi,JXi):O,
Vie{k+1,...,n}. Then,

S G ORI )+ Y (B, Xi) + B(IXG, IX;)) = 0.

Proof 3.5 (Proof of Corollary 1.1). f*w(X, Y) = g(X, Y) (is a Kaehler
form) VX,Y € TM and df*w = 0. According to Theorem 1.1 and relation
(22), V 1s metric, then nt = o.

Corollary 3.1. A totally lightlike almost complex submanifold of a

holomorphic isometric immersion is Lagrangian submanifold.

Corollary 3.2. Let f : (M?", g) » (M?", g, J, w) be a holomorphic
isometric immersion of a lightlike isotrope almost complex submanifold
into an indefinite Kaehler manifolds. Then f*w = 0, but (M?", g) is not

Lagrangian.

In this result sure, f*w = 0 on M, but m # 2n.

In the following section, we will endow the type of this submanifold a
symplectic form, which we call an associate symplectic form.

Example 3.1. Let M be a totally lightlike surface of symplectic
manifolds (R3, g, J, W), where



14 MOUHAMADOU HASSIROU
8((x1, %2, y1, ¥2); (w1, ug, vy, v9)) = —(x1uy, xgug )+ (y101 + Yovg),  (34)
J(x1, %2, 31, ¥2) = (= %2, %1, = ¥2, 31 ) (35)
W((x1, x2, 31, ¥2); (ur, ug, vy, v2)) = (x1ug — xaup ) = (V21 —v1y2). (36)
Suppose the surface M is given by equations
xg = F(xy, x3); x4 = G(xx3),
with (Fy, )* +(Gy, ) =1 (Fy, ) +(Gy,)* =1, and Fy Fy +Gj Gy, =

0. Then M is totally lightlike surface. We have

0 0 0
™ML = TM - SN LN
Span{t; o, + Fy s + Gy, ony

Hence Jacobian matrix of functions F and G is orthogonal, thus, there

exists a smooth function u such that Fy = Gy, =cosu; Fy, = -Gy, =

sin u. A straightforward calculation shows that J(TM) = TM.
The immersion isometric defines by
f: M —> Rj,
(a, b) = (a, b, F(a, b), G(a, b))
is holomorphic and f*W = 0.

Example 3.2. Let M be a coisotropic lightlike submanifold of
symplectic manifolds (Rg, g, J, W), where

8((x1, %9, 31, ¥2, 21, 22); (g, ug, vy, Vg, vy, Vg))
= —(xquy, xoug ) + (y101 + YoUg + 21V1 + 29V ),

J(xl’ X9, Y1, Y25 21> 22) = (_ X9, X1, = Y25 Y1, — 225 21)7
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W((x1, X2, y1, Y2, 21, 22 ); (wq, ug, vy, Vg, vy, Vg))
= — (= xqug + xouy ) + (= Vgyy + V1y9 — 21Vg + 29V ).

The submanifold M = {(x), xg, y1, Y2, 21, 22) € R§; 21 = y15 %9 = yp}

is defined by the following equations:
f: M- RS,

(61, 62> 63’ 64) = (xl’ X2, Y1, Y2, 21, 22)?

Xy = 61,
X9 = 02,
such that {71 ~ 0,
yg = 0%,
z = 63,
29 = 64,

fis a natural injection, then fis holomorphic. TM is spanned by

o o o a o o

:_+_7 :_+_7 = =_ > U - ~A_ >
! ox;  on 2 Oxg  0Oyg 3 01 4

Rad(TM) = TM* = span{Uy, Us}. We have JU; = Uy and JU; = U,.
Hence J(TM)=TM, M isinvariant with J. Moreover, f*W =—-d6® Ad6*.
Example 3.3. Let M be a coisotropic lightlike submanifold of

symplectic manifolds (Ri, g,J,W), where g,J, and W are defined as in
relations (34), (35), and (36). The submanifold M = {(x;, y;, X2, Y9,

8, . . . :
X3, ¥3, X4, ¥g) € Ry Xp = X35 y1 = Y35 X9 = X3 + X4; Yo = Y3 + Y4/ is an

invariant holomorphic 2-lightlike submanifold. M is spanned by
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Rad(TM) = span{Us;, U, }. We have JU; = U, and JUj3 = U,. Hence
J(TM) = TM, M is invariant with J.

Moreover, f*W = do' A d6® + do' A do* + do? A dod.

Proposition 3.3. In considering the relation (14), the different

geometry objects verify the following relations:

AjwX = JAyX; DYX,JW)=JD'(X, W); (37)
V(W) = JVE(W);  AjyX = JANX; (38)
D¥(X, JN) = JD*(X, N); V&(JN)=Jdvh(N). (39)

With a straightforward computation, we prove this proposition.

4. An Associate Symplectic Form on 2-Lightlike
Kaehler Submanifolds

4.1. Symplectic normalization

Let (M?", S(TM), S(TM*‘), g, J) be a 2lightlike Kaehler
submanifolds of an indefinite symplectic manifolds (Z\_/[ Zm .8, w). Then
fw 1is not symplectic because it is degenerated on the radical
distribution. To endow M, a symplectic form from f*w, we will consider
pairs of the normalizing null vectors (N, &) and (JN, J&) such that

d(® AJO) = 0, where 6 = g(N,.) and J0 = g(JN, .).
Lemma 4.1. d(6 A J8) = 0 iff V(N) = 0.

We will prove this lemma with easy computation.

Several authors considered the normalization problem in various
ways, but this normalization is in Bejancu and Duggal [5] approach. In
which the induced geometric objects with respect not only to the screen

distribution, but also to the choice of pair of the normalizing null vectors.
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This normalization is like the Duggal and Bejancu one in which, we

impose null vectors to be parallel.

Proposition 4.1. Let (N, &), (JN, J&) be pair of normalizing null
vectors as in previous subsection and make a change with (N', E),
(JN, JE), where N =¢N +(+W and § e T(TM), p € C(M, R)" and
WeS (TM*Y). Then,

WE=—¢&

o=

(2) 206(¢) + |¢? + [W)* = o.

®3) O/ = 90 + 26 ).

he(g, ) = VW,
@ {D'(, W) = (Vo)N,
VC = Aw.

(5) Let 7 = f*w + O AJO, then §" = ¢°n".
Proof 4.1. (1) We have
8(N, &) =B8N +¢+W, &)
= 20N, &)
= 0.

Then E = %&.

(2) We have §(ZV, K/') = 0, then deduce the result.

(3) As 0 = g(N,.) and the fact that VX € TM, g(W, X) = 0. Then,

we obtain the result.
(4) Comes from relations (14) and (15) to (19).

(5) With easy computation, we deduce the result.
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4.2, Associate symplectic form
Proof 4.2 (Proof of Theorem 1.2).
® As g\s(rm) and OAJO are, respectively, non degenerate on
S(TM) and rad(TM) and J is a bundle isomorphism, then the 2-form n

has maximal rank. It is easy to compute that 1 is a volume element
according to [7].

o The rest it is to show that dn = 0. Then,
dn(X,Y, Z) = (Vxg)(Y, JZ) - (Vyg)(X, JZ)
+(Vzg) (X, JY)+d(OAJO)X, Y, Z).
We conclude with Theorem 1.1 and Lemma 4.1.

Thus, we have a symplectic form pseudo-compatible with degenerate

metric g on M.

Corollary 4.1. The 2-isotrope or 2-totally lightlike invariant almost
complex submanifold of indefinite Kaehler manifold admits an associate

symplectic form

n=0AdJ0.

Remark 4.1. (1) Suppose &, 6, and n are defined on U and &, 0%,
and n* are defined on U”". Then, there exists a function ¢ on UNU"

such that ¢*n" = n, where the Jacobian of o, [¢, ] is given by

ORI |

where A € O(2n - 2), B e M(2n -2, 2), C € M(2, 2n - 2), and
-b .
D:ﬁ(a ja,beR.
a’ +b%\b a

(2) In another way to endow a lightlike submanifold of an indefinite
Kaehler manifold, an associate symplectic form, we can at first associate
to lightlike submanifold an associate nodegenerate metric and use the
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Kaehler form of the above metric as symplectic form. As an example of

the 2-lightlike submanifold, an associate metric express as g = g+ 0 ®
0+ JO ® J0.

(3) We can extend all this result on the r-lightlike submanifold of an
indefinite Kaehler manifold. But, the problem is to characterize the
diffeosymplectic of changing local coordinate.

4.3. Hamiltonian fields

Let (M, g, S(TM), S(TM*),n) be a lightlike symplectic
submanifold. Let note £(M, n) = {X € TM, d(ixn) = 0} the set of vector
fields, which preserve the symplectic form n and harm(M, n) = {X € £
(M, m),ixn = df}, the set of Hamiltonian fields. Recall that harm(M, n)

= £(M, n), if the cohomology group H'(M) is trivial.

Proof 4.3 (Proof of Theorem 1.3). From Lemma 4.1, we have db = 0
and deJJO = 0, or ign = JO and ign = 6. Then, we deduce the result.

Example 4.1. Let use the previous Example 3.1. We define an
associate symplectic form as n = 0 AJO, where 0 = %{dxl + Fy dxz +
Gy, dx,} and Jo = %{dxz — Gy, dxg + Fy dxy}. An easy computation,

gives &, & € harm(M, n). Then iz n = dxy and ix,n = dx;. Let defined

Poisson bracket as
0 _ # #
Vf, g € C ’ {f’ g} - n(df ’ dg )’

where df = (£.£)0 + (JE f)JO and df¥ is such that df(df¥) = 1.
5. Lightlike Symplectic Reduction

Let (M?", g, S(TM), S(TM*)) be a lightlike holomorphic

submanifolds of an indefinite Kaehler manifolds (M, g, J, w).

Corollary 5.1. The subbundle Rad(TM) is involutive.



20 MOUHAMADOU HASSIROU

Proof 5.1. It comes from Theorem 1.1 and Theorem 2.7 of [5, pg. 162].
Let f : M — M be a holomorphic isometric immersion. Let § be the
radical foliation defined on M by Rad(TM) (Frobenius theorem). The
2-form wjy; = f*w is constant along the leaves of §. Indeed, if & is a

tangent vector to the leaves of §, i.e., £ is section of € Rad(TM). Then,

But dwy; = 0 and jwpy =0, since § € TM*. Therefore, Liwy = izwy
= 0. This means that wj; is a § -basic form.

Proof 5.2 (Proof of Theorem 1.4). Suppose P is a smooth manifold and
n: M — P 1is the natural projection, there exists a 2-form wp on such

that n*wp = wys. Clearly, TP = TM / Rad(TM) and wp(x)= wy;(x)
for an x € M projecting x € P. Hence wp is a symplectic form on P

[14]. Thus, the screen symplectic manifold (P, wp) is said to be obtained

by reduction from (M, w).

For more details on space of leaves, we can see the part A of [1].

Corollary 5.2. The proper an invariant r-lightlike holomorphic
submanifolds of an indefinite Kaehler manifold admits a symplectic

reduction.
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